Abstract

Erosion and deposition is modelled with ERO2.0 for a hypothetical full-tungsten ITER for an ELM-free H-Mode baseline deuterium discharge. A parameter study considering seeding impurities (Ne, Ar, Kr, Xe) at constant percentages (0.05% to 1.0%) of the deuterium ion flux is done while neglecting their radiation cooling and core plasma compatibility. With pure deuterium plasma, tungsten main wall erosion is only due to charge exchange deuterium atoms and self-sputtering and there is only minor tungsten divertor sputtering. With a beryllium main wall, beryllium erosion is due to deuterium ions, charge exchange deuterium neutrals and self-sputtering. For this case, tungsten in the divertor is eroded by beryllium ions and self-sputtering. The simulations for full-tungsten device including seeded impurities leads to significant tungsten erosion in the divertor. In general, tungsten erosion, self-sputtering and deposition increase by factors larger than 50 at the main wall and 5000 in the divertor compared to pure deuterium plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.