Abstract

In this paper, the unsteady aerodynamics and blade structural dynamics of an experimental bearingless rotor were analyzed. Due to the multiple load path and nonlinear behavior of a bearingless rotor, sophisticated structural modeling and structural-aerodynamic coupled analysis is required. To predict the internal load and deformation of an experimental bearingless rotor, trim analysis was implemented. The results showed good agreement when compared with those predicted by CAMRAD II the rotorcraft comprehensive analysis. It is possible to extend the present structural-aerodynamic combined analysis to further advanced configurations of the bearingless rotor in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.