Abstract
Previous studies demonstrated that quantitative structure-retention relationships (QSRR) combined with the linear solvent strength (LSS) model allow for prediction of gradient reversed-phase liquid chromatography retention time for any analyte of a known molecular structure under defined LC conditions. A QSRR model derived at the selected gradient time and at the same gradient time was tested. The aim the present study was to evaluate the accuracy of QSRR predictions used during the predictions of LC gradient retention times with variable gradient times. For this purpose, predictions of retention times at two gradient times were used to find the optimal, different gradient times. In the first step, experimental retention data for the model set of analytes were used to derive appropriate QSRR models at two gradient times. These QSRR models were further used to predict gradient retention times for another set of testing analytes at the two selected above gradient times. Then, applying linear solvent-strength (LSS) theory, the predicted retention times for test analytes were used to find other optimal gradient times for those analytes. Satisfactory predictions of gradient retention times for test analytes were obtained at gradient times different from those applied for model analytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.