Abstract
The fragmental constant approach (FCA) was used to calculate water-sodium dodecyl sulfate (SDS) micelle partition coefficients, K(mw), for uncharged solutes from their structure. Subsequently, the availability of K(mw) values allows prediction of retention factor, k, in micellar electrokinetic chromatography (MEKC) using the simple relationship k = K(mw)phi, where phi is the phase ratio. The FCA model describes a micelle-water partition coefficient as the sum of the partition coefficients of the constituent atomic/molecular fragments, measured by fragmental constant values, f (i), as well as correction factors to account for various "intramolecular effects" that cause deviations from the predicted partition coefficients as, log K(mw) = sum(n)(i=1)aif i+sum(m)(i=1)kiCm. The fragmental constants for a set of 41 fragments were determined using a training set of 229 aromatic solutes and 198 aliphatic compounds. The K(mw) of the aromatic compounds in the training set were determined by MEKC, while the K(mw) of the aliphatic solutes were estimated using the linear solvation energy relationship (LSER) for the SDS micelles. The fragments consisted of both aromatic fragments (i.e., directly attached to an aromatic ring) and aliphatic fragments. The FCA predictions agree nicely with the observed and LSER partition coefficient values, even for complex molecular structures such as beta-blocker drugs. The results show the great potential of the FCA for a priori prediction of retention behavior in MEKC from solute structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.