Abstract
AbstractA rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during three‐dimensional stress reversals has been developed. An existing elasto‐plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. The framework of the kinematic hardening model was discussed in a companion paper. The previously proposed cross‐anisotropic Single Hardening Model is added to the present kinematic hardening mechanism to capture inherent anisotropy of sands in addition to the stress reversals. This model involves 13 parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large three‐dimensional stress reversals performed on medium dense cross‐anisotropic Santa Monica Beach sand are employed for comparison with predictions. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.