Abstract

Simulations that model the effects of conformational strain on the chemical reactivity of single-walled carbon nanotubes suggest a method for significantly enhancing their reactivity locally by controlled deformations. The chemisorption of hydrogen atoms is predicted to be enhanced by as much as 1.6 eV at regions of high conformational deformation, suggesting that local reactivity will be significantly enhanced. Analysis of the local electronic density of states suggests the introduction of radical p orbital character to the sites that are locally deformed, consistent with the heightened reactivity and large pyramidalization angles at these sites. Preliminary experimental data consistent with this predicted heightened reactivity is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.