Abstract

Bird attitudes, with roll, pitch, and yaw angles, are required for modeling the measured electromagnetic response of the earth. Global Positioning System (GPS) antennas can be used in airborne electromagnetic (AEM) systems to monitor airborne platform attitude and bird maneuver. We have found evidence from photographic sequences that four GPS antennas, three on the bird and one on the aircraft, generally are adequate for angular and altitude geometry control. The mounting system for the bird frame introduces vibration noise. We have developed a model that predicts bird maneuver from the use of GPS antennas already present during routine airborne surveys. The bird motion, whether inline or crossline, is modeled from the difference between the aircraft location and the mean location of the bird. This also accurately predicts the roll of the bird when an inline yoke mounting is used. The minimum number of GPS antennas required to monitor the motion of a cylindrical electromagnetic (EM) bird typical of frequency-domain systems is two, one on the aircraft and one on the bird. We have defined optimum locations of GPS antennas to enable geometric monitoring of towed-bird systems. The findings suggest that the bird be mounted with two aerodynamically efficient GPS antennas, one on the nose and one on the tail. This enables the measurement of the pitch and yaw of the bird, with roll deduced using the third GPS on the helicopter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.