Abstract

The bioenhanced dissolution of nonaqueous phase liquid (NAPL) contaminants that occurs as a result of an increased concentration gradient is influenced by several factors, including the biokinetics. This is important because available data suggest that at typical NAPL source zone concentrations, descriptions of dissolution bioenhancement may require kinetic expressions ranging from first- to zero-order. In this work, an analytical model for the bioenhancement factor, E, is developed for NAPL ganglia dissolution with zero-order kinetics, and compared to a model for E with first-order kinetics. The models are analyzed and an illustrative example is provided to demonstrate the importance of using the correct biokinetics when estimating the potential magnitude of the bioenhancement of NAPL ganglia dissolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.