Abstract

The spatiotemporal oscillations of the Min proteins in the bacterium Escherichia coli play an important role in cell division. A number of different models have been proposed to explain the dynamics from the underlying biochemistry. Here, we extend a previously described discrete polymer model from a deterministic to a stochastic formulation. We express the stochastic evolution of the oscillatory system as a map from the probability distribution of maximum polymer length in one period of the oscillation to the probability distribution of maximum polymer length half a period later and solve for the fixed point of the map with a combined analytical and numerical technique. This solution gives a theoretical prediction of the distributions of both lengths of the polar MinD zones and periods of oscillations--both of which are experimentally measurable. The model provides an interesting example of a stochastic hybrid system that is, in some limits, analytically tractable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.