Abstract

An essential aspect of extending safe operation of the world’s active nuclear reactors is understanding and predicting the embrittlement that occurs in the steels that make up the Reactor pressure vessel (RPV). In this work we integrate state of the art machine learning methods using ensembles of neural networks with unprecedented data collection and integration to develop a new model for RPV steel embrittlement. The new model has multiple improvements over previous machine learning and hand-tuned efforts, including greater accuracy (e.g., at high-fluence relevant for extending the life of present reactors), wider domain of applicability (e.g., including a wide-range of compositions), uncertainty quantification, and online accessibility for easy use by the community. These improvements provide a model with significant new capabilities, including the ability to easily and accurately explore compositions, flux, and fluence effects on RPV steel embrittlement for the first time. Furthermore, our detailed comparisons show our approach improves on the leading American Society for Testing and Materials (ASTM) E900-15 standard model for RPV embrittlement on every metric we assessed, demonstrating the efficacy of machine learning approaches for this type of highly demanding materials property prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.