Abstract
Accurate tool wear monitoring is crucial for increasing tool life and machining productivity. Although many prediction models can achieve high prediction accuracy, there are problems such as poor stability in the face of different working conditions or tool signals. A tool wear prediction method based on improved deep extreme learning machines (DELMs) was proposed as a solution to this issue; it uses the sparrow search algorithm (SSA) to upgrade the input weight of DELM to improve the model, and then extracts the time-domain, frequency-domain, and time-frequency domain characteristics from multi-sensor signals to construct and test the improved model SSA-DELM. The verification results show that the proposed model accurately reflects the tool wear. Meanwhile, the RMSE of the proposed model decreased by 53.39%, 19.95%, 43.86%, 23.80%, 24.80%, and 3.72%, respectively, and the MAE decreased by 67.81%, 17.87%, 32.70%, 29.90%, 30.30%, and 6.78%, respectively, compared to the with unimproved DELM, particle swarm optimization-least squares support vector machine, long short-term memory, stacked sparse autoencoder, recurrent neural network, and dung beetle optimizer-DELM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.