Abstract

Choose factors which influence the energy demand by the method of path analysis, build radial basis function (RBF) neural network model to predict energy demand in China. The RBF neural network is trained with the actual data of the main factors affecting energy demand during 1989-2003 and energy demand during 1993-2007 as learning sample with a good fitting effect. After testing network with the actual data of the main factors affecting energy demand during 2004-2007 and energy demand during 2008-2011, higher prediction accuracy can be obtained. By comparison with the BP network, RBF network prediction model outperforms BP network prediction model, finally RBF network is applied to make prediction of energy consumption for the year 2013-2015.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.