Abstract

Wind energy is becoming one of the most important sources of renewable energy for many countries in the future. The purpose of this study is to predict wind speed using different algorithms. In this study, a new hybrid algorithm is developed to predict the wind speed behavior, and 24 h predictions of changes in wind speed are obtained with the aid of Homer software. The proposed algorithm is a combination of a well-known artificial neural network predictor called extreme learning machine as an artificial neural network algorithm and the Grey model (1, 1) as a method of Grey systems theory. Long-term wind speed forecasts are obtained using three-year data (2013–2016) of eight variables: TMAX, TMIN, VP, RHMIN, RHMAX, WINDSPEED, SUNSHINE HOURS, and PERCIPITATION for the Zanjan city in Iran, and 24 h wind speed forecast is obtained using 10-year data (2005–2015) pertaining to this city. The results show that proposed algorithm with relative measure of fit R2 of 0.99376 and mean square error of 0.000376 provides better predictions of wind speed in the study area than ordinary extreme learning machine algorithm with R2 of 0.98075 and mean square error of 0.00720. Also, the 24 h prediction of changes in wind speed is done using Homer software. The methodology in this research is more efficient in terms of execution performance and accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call