Abstract

The objective of this paper is to investigate the influence of solid-state phase transformation on the evolution of residual stress distributions in butt-welded modified 9Cr–1Mo steel pipes. A thermal elastic plastic finite element model taking into account the metallurgical phase transformation was developed. Effects on welding residual stress of the volumetric change and the yield strength change due to austenite–martensite transformation were investigated by means of numerical analysis. The simulated results show that the volumetric change and the yield strength change due to martensite transformation have influences on the welding residual stress. The former not only changes the magnitude of residual stress, but also alters the sign of residual stress in the weld zone; and the later only changes the magnitude of residual stress. In the cases in which the volumetric change due to phase transformation is considered, the simulated results are generally in good agreement with the experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.