Abstract

ABSTRACT Appropriate estimation and prediction of wave overtopping discharges are very important in terms of economics, port structure stability, and port operation. In recent years, machine learning (ML) techniques, which predict by finding statistical structures from input/output data using computers, have generated interest. However, as the complexity of ML models increases, interpreting their results becomes increasingly difficult. Interpretation of ML results is an important part in developing an efficient structure design strategy for improved wave overtopping discharge estimation. Therefore, in this study, eight linear/nonlinear ML models were applied to the same data, and a pipeline model for selecting an ML model suitable for data characteristics was developed. In addition, the importance of variables related to the prediction of wave overtopping discharges and their correlations were analyzed by interpretable ML. The research results showed that the extreme gradient boosting model had the highest prediction accuracy and significantly reduced the error. Accordingly, a data-based model can be a new alternative for analyzing the complex physical relationships in the field of coastal engineering and used as a starting point toward structure design and development for coastal disaster prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.