Abstract

Numerical simulations based on plans for a deep geothermal system in Basel, Switzerland are used here to understand chemical processes that occur in an initially dry granitoid reservoir during hydraulic stimulation and long-term water circulation to extract heat. An important question regarding the sustainability of such enhanced geothermal systems (EGS), is whether water–rock reactions will eventually lead to clogging of flow paths in the reservoir and thereby reduce or even completely block fluid throughput. A reactive transport model allows the main chemical reactions to be predicted and the resulting evolution of porosity to be tracked over the expected 30-year operational lifetime of the system. The simulations show that injection of surface water to stimulate fracture permeability in the monzogranite reservoir at 190°C and 5000m depth induces redox reactions between the oxidised surface water and the reduced wall rock. Although new calcite, chlorite, hematite and other minerals precipitate near the injection well, their volumes are low and more than compensated by those of the dissolving wall-rock minerals. Thus, during stimulation, reduction of injectivity by mineral precipitation is unlikely. During the simulated long-term operation of the system, the main mineral reactions are the hydration and albitization of plagioclase, the alteration of hornblende to an assemblage of smectites and chlorites and of primary K-feldspar to muscovite and microcline. Within a closed-system doublet, the composition of the circulated fluid changes only slightly during its repeated passage through the reservoir, as the wall rock essentially undergoes isochemical recrystallization. Even after 30years of circulation, the calculations show that porosity is reduced by only ∼0.2%, well below the expected fracture porosity induced by stimulation. This result suggests that permeability reduction owing to water–rock interaction is unlikely to jeopardize the long-term operation of deep, granitoid-hosted EGS systems. A peculiarity at Basel is the presence of anhydrite as fracture coatings at ∼5000m depth. Simulated exposure of the circulating fluid to anhydrite induces a stronger redox disequilibrium in the reservoir, driving dissolution of ferrous minerals and precipitation of ferric smectites, hematite and pyrite. However, even in this scenario the porosity reduction is at most 0.5%, a value which is unproblematic for sustainable fluid circulation through the reservoir.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.