Abstract

Coastal acoustic tomography (CAT) is a remote sensing technique that utilizes acoustic methodologies to measure the dynamic characteristics of the ocean in expansive marine domains. This approach leverages the speed of sound propagation to derive vital ocean parameters such as temperature and salinity by inversely estimating the acoustic ray speed during its traversal through the aquatic medium. Concurrently, analyzing the speed of different acoustic waves in their round-trip propagation enables the inverse estimation of dynamic hydrographic features, including flow velocity and directional attributes. An accurate forecasting of inversion answers in CAT rapidly contributes to a comprehensive analysis of the evolving ocean environment and its inherent characteristics. Graph neural network (GNN) is a new network architecture with strong spatial modeling and extraordinary generalization. We proposed a novel method: employing GraphSAGE to predict inversion answers in OAT, using experimental datasets collected at the Huangcai Reservoir for prediction. The results show an average error 0.01% for sound speed prediction and 0.29% for temperature predictions along each station pairwise. This adequately fulfills the real-time and exigent requirements for practical deployment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call