Abstract
This paper describes the application of multi-layer perceptron (MLP), radial basis network and adaptive neuro-fuzzy inference system (ANFIS) models for computing dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) levels in the Karoon River (Iran). Nine input water quality variables including EC, PH, Ca, Mg, Na, Turbidity, PO4, NO3 and NO2, which were measured in the river water, were employed for the models. The performance of these models was assessed by the coefficient of determination R 2, root mean square error and mean absolute error. The results showed that the computed values of DO, BOD and COD using both the artificial neural network and ANFIS models were in close agreement with their respective measured values in the river water. MLP was also better than other models in predicting water quality variables. Finally, the sensitive analysis was done to determine the relative importance and contribution of the input variables. The results showed that the phosphate was the most effective parameters on DO, BOD and COD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.