Abstract

Water is one of the most abundant substances on earth, but it is still not entirely understood. It shows unusual behavior, and its properties present characteristic extrema unlike any other fluid. This unusual behavior has been linked to the two-state theory of water, which proposes that water forms different clusters, one with a high density and one with a low density, which may even form two distinct phases at low temperatures. Models incorporating the two-state theory manage to capture the unusual extrema of water, unlike traditional equations of state, which fail. In this work, we have derived the framework to incorporate the two-state theory of water into the Statistical-Associating-Fluid-Theory (SAFT). More specifically, we have assumed that water is an ideal solution of high density water molecules and low density water molecules that are in chemical equilibrium. Using this assumption, we have generalized the association term SAFT to allow for the simultaneous existence of the two water types, which have the same physical parameters but different association properties. We have incorporated the newly derived association term in the context of the Perturbed Chain-SAFT (PC-SAFT). The new model is referred to as PC-SAFT-Two-State (PC-SAFT-TS). Using PC-SAFT-TS, we have succeeded in predicting the characteristic extrema of water, such as its density and speed of sound maximum, etc., without loss of accuracy compared to the original PC-SAFT. This new framework is readily extended to mixtures, and PC-SAFT-TS manages to capture the solubility minimum of hydrocarbons in water in a straightforward manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.