Abstract

The broadly neutralizing antibody (bnAb) VRC01 is being evaluated for its efficacy to prevent HIV-1 infection in the Antibody Mediated Prevention (AMP) trials. A secondary objective of AMP utilizes sieve analysis to investigate how VRC01 prevention efficacy (PE) varies with HIV-1 envelope (Env) amino acid (AA) sequence features. An exhaustive analysis that tests how PE depends on every AA feature with sufficient variation would have low statistical power. To design an adequately powered primary sieve analysis for AMP, we modeled VRC01 neutralization as a function of Env AA sequence features of 611 HIV-1 gp160 pseudoviruses from the CATNAP database, with objectives: (1) to develop models that best predict the neutralization readouts; and (2) to rank AA features by their predictive importance with classification and regression methods. The dataset was split in half, and machine learning algorithms were applied to each half, each analyzed separately using cross-validation and hold-out validation. We selected Super Learner, a nonparametric ensemble-based cross-validated learning method, for advancement to the primary sieve analysis. This method predicted the dichotomous resistance outcome of whether the IC50 neutralization titer of VRC01 for a given Env pseudovirus is right-censored (indicating resistance) with an average validated AUC of 0.868 across the two hold-out datasets. Quantitative log IC50 was predicted with an average validated R2 of 0.355. Features predicting neutralization sensitivity or resistance included 26 surface-accessible residues in the VRC01 and CD4 binding footprints, the length of gp120, the length of Env, the number of cysteines in gp120, the number of cysteines in Env, and 4 potential N-linked glycosylation sites; the top features will be advanced to the primary sieve analysis. This modeling framework may also inform the study of VRC01 in the treatment of HIV-infected persons.

Highlights

  • The immense genetic and antigenic diversity of the trimeric HIV-1 envelope (Env) glycoprotein spike [precursor form =3, proteolytically cleaved to3], the major target of neutralizing antibodies, poses a significant problem in the development of an effective prophylactic vaccine

  • The two Antibody Mediated Prevention (AMP) clinical trials are testing whether intravenous infusion of VRC01 can prevent HIV-1 infection

  • Since the outer envelope (Env) protein of HIV-1 is highly genetically diverse, the AMP trials will evaluate in an “amino acid sequence sieve analysis” whether VRC01 prevents infection differentially depending on Env amino acid features of exposing viruses

Read more

Summary

Introduction

Neutralizing monoclonal antibodies (bnAbs) isolated from individuals with chronic HIV-1 infection have demonstrated significant promise by targeting a wide spectrum of this diversity [1,2,3,4,5]. These bnAbs generally target conserved elements in one of five regions of gp160: the V2 variable region, the N332 region in the V3 region, the CD4 binding site (CD4bs), the gp120–gp interface, and the membrane proximal external region [6]. VRC01 has moved through four phase 1 clinical trials

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call