Abstract
Seasonality and volatility of vegetation in the ecosystem are associated with climatic sensitivity, which can have severe consequences for the environment as well as on the social and economic well-being of the nation. Monitoring and forecasting vegetation growth patterns in ecosystems significantly rely on remotely sensed vegetation indices, such as Normalized Difference Vegetation Index (NDVI). A novel integration of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and the Holt-Winters (H-W) models was used to simulate the seasonality and volatility of the three different agro-climatic zones in Jharkhand, India: the central north-eastern, eastern, and south-eastern agro-climatic zones. MODIS Terra Vegetation Indices NDVI data MOD13Q1, from 2001 to 2021, was used to create NDVI time series volatility and seasonality modeled by the GARCH and the H-W models, respectively. GARCH-based Exponential GARCH (EGARCH) [1,1] and Standard GARCH (SGARCH) [1,1] models were used to check the volatility of vegetation growth in three different agro-climatic zones of Jharkhand. The SGARCH [1,1] and EGARCH [1,1] models for the western agro-climatic zone experienced the best indicator as it has maximum likelihood and minimal Schwarz-Bayesian criterion and Akaike information criterion. The seasonality results showed that the additive H-W model showed better results in the eastern agro-climatic zone with the optimized values of MAE (16.49), MAPE (0.49), NSE (0.86), RMSE (0.49), and R2 (0.82) followed by the south-eastern and central north-eastern agro-climatic zones. By utilizing the H-W and GARCH models, the finding demonstrates that vegetation orientation and monitoring seasonality can be predicted using NDVI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.