Abstract

Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machine learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree (ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R2 of 0.71. Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind speed emerged as the primary determinants in forecasting PM2.5 levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call