Abstract
Diesel exhaust treatment in plasma environment is a complex phenomenon mainly involving oxidation of several gaseous pollutants. With the help of artificial neural network, an attempt has been made in this paper to predict the variation of nitric oxide/nitrogen dioxide when the exhaust is subjected to discharge plasma. Electrical (power and frequency) and physical (engine load and flow rate) parameters have been considered as inputs of a three-layered artificial neural network model to track the performance of the treatment. Two different backpropagation algorithms named Bayesian regularization and Levenberg–Marquardt have been applied to compare the prediction performance. Bayesian regularization training algorithm shows better agreement with the experimental data than Levenberg–Marquardt in terms of root-mean-square error and correlation coefficient. Further, sensitivity analysis has been carried out to obtain an insight about the relative importance of input parameters on output parameters. This investigation shows that the applied input power is the most influential among the four input parameters from the point of variation of nitric oxide/nitrogen dioxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.