Abstract

Phenylacetylcarbinol (PAC) is an important chiral molecule, the R-isomer of which is used in the manufacture of several pharmaceutical products and is currently produced by means of biotransformation. The knowledge of thermodynamic properties of PAC is essential to improve the process involving the separation of PAC from the organic solvent, used in the biotransformation process to extract PAC from the aqueous broth. In spite of its importance, limited experimental vapour pressure data is available on PAC in the literature. Hence, in this study, the physical and thermodynamic properties of PAC are predicted using structure property correlations combined with equations of state, and also molecular simulation as the first step to optimize the process design for the production of PAC. The properties predicted include liquid and vapour densities at co-existence, enthalpy of vaporization, saturation pressure, critical point and normal boiling point. The liquid and vapour densities at coexistence and the critical point data from both the methods are found to be in agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.