Abstract
IntroductionVaccines have contributed to substantial reductions of morbidity and mortality from vaccine-preventable diseases, mainly in children. However, vaccine hesitancy was listed by the World Health Organization (WHO) in 2019 as one of the top ten threats to world health.AimTo employ machine-learning strategies to assess how on-line content regarding vaccination affects vaccine hesitancy.MethodsWe collected social media posts and responses from vaccination discussion groups and forums on leading social platforms, including Facebook and Tapuz (A user content website that contains blogs and forums). We investigated 65,603 records of children aged 0–6 years who are insured in Maccabi’s Health Maintenance Organization (HMO). We applied three machine learning algorithms (Logistic regression, Random forest and Neural networks) to predict vaccination among Israeli children, based on demographic and social media traffic.ResultsHigher hesitancy was associated with more social media traffic, for most of the vaccinations. The addition of the social media traffic features improved the performances of most of the models.However, for Rota virus, Hepatitis A and hepatitis B, the performances of all algorithms (with and without the social media features) were close to random (accuracy up to 0.63 and F1 up to 0.65). We found a negative association between on-line discussions and vaccination.ConclusionsThere is an association between social media traffic and vaccine hesitancy. Policy makers are encouraged to perceive social media as a main channel of communication during health crises. Health officials and experts are encouraged to take part in social media discussions, and be equipped to readily provide the information, support and advice that the public is looking for, in order to optimize vaccination actions and to improve public health
Highlights
Vaccines have contributed to substantial reductions of morbidity and mortality from vaccine-prevent‐ able diseases, mainly in children
We found a negative association between on-line discussions and vaccination
There is an association between social media traffic and vaccine hesitancy
Summary
Vaccines have contributed to substantial reductions of morbidity and mortality from vaccine-prevent‐ able diseases, mainly in children. Vaccines have contributed to substantial reductions of morbidity and mortality from vaccine-preventable diseases, mainly in children [1]. Since the relationship between on-line communication and vaccination hesitancy is complex and indirect, we need more than self-reports to assess it. This study employs machine-learning strategies to assess the association between on-line content regarding vaccination and vaccine hesitancy. Our goal was to predict vaccination hesitancy by applying semantic analysis to vaccination related discourse in the social media. It applies machine learning techniques to predict the effect of social media communication on vaccine behavior; 2. It is based on a ‘naturally occurring discourse’ rather than on subjective self-reports
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.