Abstract

The design of intelligent powered wheelchairs has traditionally focused heavily on providing effective and efficient navigation assistance. Significantly less attention has been given to the end-user's preference between different assistance paradigms. It is possible to include these subjective evaluations in the design process, for example by soliciting feedback in post-experiment questionnaires. However, constantly querying the user for feedback during real-world operation is not practical. In this paper, we present a model that correlates objective performance metrics and subjective evaluations of autonomous wheelchair control paradigms. Using off-the-shelf machine learning techniques, we show that it is possible to build a model that can predict the most preferred shared-control method from task execution metrics such as effort, safety, performance and utilization. We further characterize the relative contributions of each of these metrics to the individual choice of most preferred assistance paradigm. Our evaluation includes Spinal Cord Injured (SCI) and uninjured subject groups. The results show that our proposed correlation model enables the continuous tracking of user preference and offers the possibility of autonomy that is customized to each user.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.