Abstract
Two-dimensional (2D) semiconductors with suitable band gaps, high carrier mobility, and environmental stability are crucial for applications in the next generation of electronics and optoelectronics. However, current candidate materials each have one or more issues. In this work, two novel C3N2 monolayers, P-C3N2 and I-C3N2 are proposed by first-principles calculations. Both structures have demonstrated excellent dynamical and mechanical stability, with thermal stability approaching 3000 K. Importantly, P-C3N2 shows a distinct advantage in formation energy compared to currently synthesized 2D carbon nitride materials, indicating its potential for experimental synthesis. Electronic structure calculations reveal that both P-C3N2 and I-C3N2 are intrinsic semiconductors with moderate band gaps of 2.19 and 1.81 eV, respectively. Additionally, both C3N2 monolayers display high absorption coefficients up to 105 cm-1, with P-C3N2 showing significant absorption capabilities in the visible light region. Remarkably, P-C3N2 possesses an ultra-high carrier mobility of up to 104 cm2 V-1 s-1. These findings provide theoretical insights and candidates for future applications in the electronics and optoelectronics fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.