Abstract
Due to the intrinsic complexity of two-phase flow distribution and the limited mathematical flexibility of conventional formulations of the phenomenon, previous attempts generally fall short in the accuracy and applicability of their prediction. To address these issues, this study focuses on methods with higher mathematical flexibility. Specifically, the construction and training of Artificial Neural Network (ANN) is presented for the identification of this complex phenomenon. The interaction of the numerous physical phenomena, occurring at different scales, is thus represented by the network structure, offering a formulation capable of achieving higher accuracy. Experimental data from a full-scale heat exchanger of an air-conditioning system operating over a wide range of conditions are used to train and test the ANN. The network optimisation with Bayesian regularisation against experimental data leads to a structure featuring 4 inputs, 3 hidden layers, and 3 neurons for each layer, which demonstrates deviations on the single output mostly lower than ± 10% and a correlation index higher than 98%, when the whole data set is used for training the ANN. The analysis of the network optimisation for different shares of data used for the network testing, shows higher training and testing accuracy as the number of training data increases, along with no apparent overfitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Refrigeration
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.