Abstract

The predictability of tropical Atlantic sea surface temperature on seasonal to interannual timescales by linear inverse modeling is quantified. The authors find that predictability of Caribbean Sea and north tropical Atlantic sea surface temperature anomalies (SSTAs) is enhanced when one uses global tropical SSTAs as predictors compared with using only tropical Atlantic predictors. This predictability advantage does not carry over into the equatorial and south tropical Atlantic; indeed, persistence is a competitive predictor in those regions. To help resolve the issue of whether or not the dipole structure found by applying empirical orthogonal function analysis to tropical Atlantic SSTs is an artifact of the technique or a physically real structure, the authors combine empirically derived normal modes and their adjoints to form ‘‘influence functions,’’ maps highlighting the geographical areas to which the north tropical Atlantic and the south tropical Atlantic SSTs are most sensitive at specified lead times. When the analysis is confined to the Atlantic basin, the 6-month influence functions in the north and south tropical Atlantic tend to be of the opposite sign and evolve into clear dipoles within 6 months. When the analysis is performed on global tropical SSTs, the 6-month influence functions are connected

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call