Abstract

An attempt is made in this work to combine the Enskog theory of transport properties with the simple cubic Peng-Robinson (PR) equation of state. The PR equation of state provides the density dependence of the equilibrium radial distribution function. A slight empirical modification of the Enskog equation is proposed to improve the accuracy of correlation of thermal conductivity and viscosity coefficient for dense gases and liquids. Extensive comparisons with experimental data of pure fluids are made for a wide range of fluid states with temperatures from 90 to 500 K and pressures from 1 to 740 atm. The total average absolute deviations are 2.67% and 2.02% for viscosity and thermal conductivity predictions, respectively. The proposed procedure for predicting viscosity and thermal conductivity is simple and straightforward. It requires only critical parameters and acentric factors for the fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call