Abstract

Protein-protein interactions (PPIs) can be classified as permanent or transient interactions based on their stability or lifetime. Understanding the precise details of such protein interactions will pave the way for the discovery of inhibitors and for understanding the nature and function of PPIs. In the present work, 43 relevant physicochemical, geometrical and structural features were calculated for a curated dataset from the literature, comprising of 402 protein-protein complexes of permanent and transient categories, and 5 different Supervised Machine Learning models were developed with Scikit-learn to predict transient and permanent PPI. Additionally, deep learning method with Artificial Neural Network was also performed using Tensor Flow and Keras. Predicted models achieved accuracy ranging from 76.54% to 82.71% and k-NN has achieved the highest accuracy. Detailed analysis of these methods revealed that Interface areas such as Percent interface accessible area, Interface accessible area and Total interface area and the parameters defining the shape of the PPI interface such as Planarity, Eccentricity and Circularity are the most discriminating factors between these two categories. The present method could serve as an effective tool to understand the mechanism of protein association and to predict the transient and permanent interactions, which could supplement the costly and time-consuming experimental techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.