Abstract

A visible/near-infrared hyperspectral imaging (HSI) system (400–1000nm) coupled with wavelet analysis was used to determine the total volatile basic nitrogen (TVB-N) contents of prawns during cold storage. Spectral information was denoised by conducting wavelet analysis and uninformative variable elimination (UVE) algorithm, and then three wavelet features (energy, entropy and modulus maxima) were extracted. Quantitative models were established between the wavelet features and the reference TVB-N contents by using three regression algorithms. As a result, the LS-SVM model with modulus maxima features was considered as the best model for determining the TVB-N contents of prawns, with an excellent RP2 of 0.9547, RMSEP=0.7213mgN/100g and RPD=4.799. Finally, an image processing algorithm was developed for generating a TVB-N distribution map. This study demonstrated the possibility of applying the HSI imaging system in combination with wavelet analysis to the monitoring of TVB-N values in prawns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.