Abstract

Accurate assessment of body composition is essential for evaluating the risk of chronic disease. 3D body shape, obtainable using smartphones, correlates strongly with body composition. We present a novel method that fits a 3D body mesh to a dual-energy X-ray absorptiometry (DXA) silhouette (emulating a single photograph) paired with anthropometric traits, and apply it to the multi-phase Fenland study comprising 12,435 adults. Using baseline data, we derive models predicting total and regional body composition metrics from these meshes. In Fenland follow-up data, all metrics were predicted with high correlations (r > 0.86). We also evaluate a smartphone app which reconstructs a 3D mesh from phone images to predict body composition metrics; this analysis also showed strong correlations (r > 0.84) for all metrics. The 3D body shape approach is a valid alternative to medical imaging that could offer accessible health parameters for monitoring the efficacy of lifestyle intervention programmes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.