Abstract

We report a discovery, through first-principles calculations, that crystalline Ge-Sb-Te (GST) phase-change materials exhibit the topological insulating property. Our calculations show that the materials become topological insulator or develop conducting surface-like interface states depending on the layer stacking sequence. It is shown that the conducting interface states originate from topological insulating Sb2Te3 layers in GSTs and can be crucial to the electronic property of the compounds. These interface states are found to be quite resilient to atomic disorders but sensitive to the uniaxial strains. We presented the mechanisms that destroy the topological insulating order in GSTs and investigated the role of Ge migration that is believed to be responsible for the amorphorization of GSTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.