Abstract
This paper presents a stochastic model for predicting the tool failure rate in turning hardened steel with ceramic tools. This model is based on the assumption that gradual wear, chemical wear, and premature failure (i.e. chipping and breakage) are the main causes of ending the tool life. A statistical distribution is assumed for each cause of tool failure. General equations for representing tool-life distribution, reliability function, and failure rate are then derived. The assumed distributions are then verified experimentally. From the experimental results, the coefficients of these equations are determined. Further, the rate of failure is used as a characteristic signature for qualitative performance evaluation. The results obtained show that the predicted rate of ceramic tool failure is 20% (in the first few seconds of machining) and it increases with an increase in cutting speeds. These results indicate that there will always be a risk that the tool will fail at a very early stage of cutting. Such a possibility should not be overlooked when developing proper tool replacement strategies. Finally, the results also give the tool manufacturers information which can be used to modify the quality control procedures in order to broaden the use of ceramic tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.