Abstract

The ability to predict the presence and physical properties of small-scale sand ripples on the sea bed is important for determining the bed roughness felt by currents and waves, for sediment transport applications, and for acoustic applications. A fully time-evolving model is presented for predicting the height, length and orientation of sand ripples generated by currents, waves or both, which includes processes dealing with threshold of motion, ripple wash-out and biological degradation. We believe that this is currently the only predictor to feature all these properties, and is thus more widely applicable to shelf seas than other more sophisticated, but less comprehensive, methods. Tests against a large data-set of observations using an Acoustic Ripple Profiler at a site on the east coast of England, where ripples are generated by both tidal currents and waves, showed that the predictor captures most of the main features observed. A modified criterion for the wave/current dominance in the prediction equations improved some aspects of the agreement. The properties of current-generated ripples are predicted accurately, but the wavelength, and to a lesser extent the height, of wave-generated ripples show some under-prediction. Ripple orientations are modelled in an approximate way, but the main features of the observed orientations are captured. The bio-degradation feature of the predictor could not be tested with this data-set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.