Abstract

In the electrocatalytic nitrogen reduction reaction (NRR), nitrogen (N2) is chemically inert, it is difficult to break the triple bond, and the subsequent protonation step is very challenging. Suitable catalysts with high selectivity and high activity are needed to promote the electrocatalytic NRR. We screen a large number of clusters composed of three metal atoms embedded into a two-dimensional metal nitride, W2N3, with a N vacancy, and calculate the reaction energetics. The VNiCu cluster has the best catalytic activity among all the catalysts proposed so far. The Fe3 and Fe2Co clusters are excellent catalysts as well. In all cases, spin polarization is needed to observe the catalytic effect. We establish the optimal NRR path and confirm that it remains unchanged in the presence of a solvent. We find three groups of descriptors that can well predict the materials' properties and exhibit linear relationships with the NRR limiting potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call