Abstract
Potassium borohydrides [KBH4] is an attractive candidate for on-board storage because it contains high densities of hydrogen by weight and volume. Using a set of recently developed theoretical first-principles methods, we predict hydrogen storage reactions in the K-M(Li, Na, Ca)-B-H system. Hydrogen release from KBH4 is predicted to proceed via intermediate K2B12H12 phase. In the present study, we predict two new hydrogen storage reactions that are some of the most attractive among the presently known ones. They are predicted to have thermodynamics for hydrogen release within the target window for on-board storage being actively considered for hydrogen storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.