Abstract

Second-generation biofuels are a complex mixture of organic compounds that can be further processed to hydrocarbon fuels and other valuable chemicals. One such chemical is levulinic acid (IUPAC name: 4-oxo pentanoic acid), which is a highly versatile ketoacid obtained from cellulose present in agricultural byproducts. For oxygen-containing compounds that decompose at elevated temperatures and pressures, determining the vapor–liquid equilibria data at high temperatures via the experimental route may be challenging. The molecular simulation approach is a cost-effective tool to obtain the necessary data while also allowing us to understand the microscopic origins of macroscopic observable properties. We have employed the transferable potential for phase equilibria-united atom force field to describe the interactions in this system with the parameters for a torsional interaction that are not reported in the literature (levulinic acid is a ketoacid) being determined from density functional theory calculations. We have verified our parameterization via density computations in the isothermal–isobaric ensemble and by comparing our simulation results with the corresponding data from experiments reported in the literature. We have performed grand-canonical transition-matrix Monte Carlo simulations in the temperature range from 580 to 690 K to estimate the vapor–liquid coexistence curves in the temperature–density plane and the Clapeyron plots. From this data, the critical point (TC = 755 K, ρC = 285.4 kg/m3, and PC = 30.57 bar) has been estimated, and this may be used as input to the equations of state employed in process simulation software for design of industrial separation processes including those for “biorefining”. As levulinic acid is a “ketoacid”, hydrogen bonding occurs, and the liquid phase structure has also been studied using radial distribution functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.