Abstract

We have employed Monte Carlo simulation in the isobaric–isothermal ensemble to determine thermodynamic derivative properties of naturally occurring hydrocarbon gas mixtures. Thermal expansivity, isothermal compressibility, heat capacity and Joule–Thomson coefficient have been obtained from a fluctuation method detailed in our previous work [Phys. Chem. Chem. Phys. 3 (2001) 4333]. We have investigated two natural gases using an original method to model hydrocarbon distribution in a representative way with a limited number of linear, branched and cyclic hydrocarbon molecules. The composition used in Monte Carlo simulations was represented by 500 molecules of 20 different types with up to 35 carbon atoms. The two condensate gases are composed of rigid and flexible molecules for which intermolecular potentials have been used without fitting any parameters. Predictions are in good agreement with respect to available molar volumes at high pressure. Joule–Thomson coefficients and the other thermodynamic derivative properties have been then predicted at pressures up to 110 MPa at reservoir temperature, showing a consistent behaviour compared with light hydrocarbon gases. Inversion pressure of the Joule–Thomson effect is obtained within 1.2% compared to experimental value from volumetric measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.