Abstract
Generally, thermal stress induced by hydration heat causes cracking in mass concrete structures, requiring a thorough control during the construction. The prediction of the thermal stress is currently undertaken by means of numerical analysis despite its lack of reliability due to the properties of concrete varying over time. In this paper, a method for the prediction of thermal stress in concrete structures by adjusting thermal stress measured by a thermal stress device according to the degree of restraint is proposed to improve the prediction accuracy. The ratio of stress in concrete structures to stress under complete restraint is used as the degree of restraint. To consider the history of the degree of restraint, incremental stress is predicted by comparing the degree of restraint and the incremental stress obtained by the thermal stress device. Furthermore, the thermal stresses of wall and foundation predicted by the proposed method are compared to those obtained by numerical analysis. The thermal stresses obtained by the proposed method are similar to those obtained by the analysis for structures with internally as well as externally strong restraint. It is therefore concluded that the prediction of thermal stress for concrete structures with various boundary conditions using the proposed method is suggested to be accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.