Abstract

Thermal performance of a three chip, overmolded wire-bonded plastic ball grid array (WB-PBGA) package with four layer substrate attached to a 1.52-mm-thick, four-layer (2s2p), FR4 printed wiring board (PWB) has been evaluated under horizontal natural convection conditions for underhood automotive applications as a function of ambient temperature, package design parameters, and thermophysical properties of the package and PWB materials. A two-tier modeling approach, which accurately accounts for multidimensional heat transfer effects caused by substrate features such as vias and C5 solder joints, has been developed and implemented. In this methodology, the effect of small features is first characterized using a detailed micromodel from which an effective thermal conductivity is computed. The effective thermal conductivity is implemented in the global model thereby excluding the small features in the global model. The actual stackups of the package and PWB have been used in the computations to accurately determine the in-plane heat spreading. Using this methodology for automotive underhood applications, a parametric study of thermal performance of the WB-PBGA package has been carried out. This study shows that: 1. The maximum junction temperature rise above ambient, ΔT, decreases with increase in ambient temperature by 30% as the ambient temperature increases from 23 to 125°C. 2. ΔT decreases by 20% as the emissivity of the molding compound and the PWB surfaces increases from 0 (no radiative loss) to 0.8 under natural convection conditions. 3. The decrease in ΔT is small (∼7%) as the thermal conductivity of the die attach material varies over a wide range. 4. ΔT decreases by 30% as the thermal conductivity of the molding compound is varied over a wide range. 5. ΔT decreases by 45% as the thermal conductivity of the substrate increases (i.e., as the number of vias in the substrate increase) from no vias case to densely populated vias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.