Abstract

Continuous rotation of spindle bearings and motor cause thermally induced structural deformations and thermal growth, which is one of the main reasons for machining errors. A positive feedback loop between bearing preload and heat generation causes preload variations in spindle bearings. These preload variations demonstrate a nonlinear transient behavior until the gradual expansion of outer bearing rings after which the thermally induced preload variation behaves steadily. In this study, a Finite Element (FE) framework is presented for predicting steady preload variation on spindle bearings. The method involves a thermal loading model and a transient contact analysis. In the contact analysis phase bearing contact deformations (penetration and sliding) and pressure are predicted by considering contact algorithms in an FE software. A transient spindle simulation in FE is employed to predict the bearing temperature and thermal spindle growth by using the proposed method. The performance of the method is demonstrated on a spindle prototype through bearing temperature and thermal deformation measurements. Results show that the proposed method can be a useful tool for spindle design and improvements due to its promising results and speed without the need for tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.