Abstract

This study addresses the critical challenge of predicting sediment behavior in a semi-enclosed estuary, where the interplay between artificial freshwater discharge and seawater significantly impacts turbidity. Such environments are characterized by complex hydrodynamic interactions that lead to cycles of sediment settling and resuspension, influenced by tidal forces. To tackle this problem, we employed machine learning, leveraging its capability to analyze and predict complex non-linear phenomena. Our approach involved extensive transect observations conducted over two years, encompassing 11 ebb tide and 9 flood tide cycles. These observations were crucial for training the machine learning model, ensuring it captured the nuanced dynamics of sediment behavior under varying hydrodynamic conditions. The necessity of this research lies in its potential to enhance our understanding of sediment dynamics in estuaries, a vital aspect for environmental management and engineering projects. The findings demonstrate a promising alignment between the machine learning model’s predictions and the theoretically assumed sediment behavior, highlighting the model’s effectiveness in deciphering and predicting turbidity patterns in these challenging environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.