Abstract
A dataset containing transition temperature values for 243 bent-core liquid crystal (LC) compounds was used to develop quantitative structure–property relationship (QSPR) models using only 2D molecular descriptors and general regression neural network (GRNN). Beside a standard analogue GRNN model, another GRNN model with fuzzy digital response was created with the aim to estimate the prediction error for each compound. Two approaches for the selection of most relevant subset of descriptors, namely the partial mutual information (PMI) and self-organizing maps combined with chi square ranking, were also compared. The best results were obtained using analogue GRNN model based on PMI selected subset (R2=0.91), with the mean absolute error (MAE) lower in comparison with previously published corresponding QSPR models. The digital PMI-GRNN model enabled distinction between high and low accurate predictions, i.e. ones with absolute error higher than mean absolute error (MAE) and others with absolute error ≤ MAE, with the accuracy of 81%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.