Abstract

This paper presents a method to investigate the dynamic behavior of a turning high-speed spindle system. The machine tool main spindle unit is focused on direct driven spindle units for high-speed and high performance cutting. This paper analyzes the static behavior for a turning machine spindle and presents some activities to improve the CAD model for such complex systems. The proposed models take into account the spindle with the bearing detailed system. The analysis was performed during the design activity and was based on Finite Elements Method. Starting from the 3D model, using FEM done by means of ANSYS analysis, structural dynamic behavior was evaluated. The aim of this paper is to develop a finite element model of the machine spindle system and use this method for design optimization. The 3D model was designed using the Solidworks CAD software. In order to obtain accurate dynamic characteristics of the spindle-bearing system during the design stage, the finite element model is simulated using dedicated software, and a method in which springs and damping units imitate bearing support. The proposed method can predict the regular pattern in which bearing stiffness and bearing span affect natural frequency and harmonic response. The research demonstrates that this method predicts the dynamic characteristics of the spindle-bearing system therefore it can be a reference for dynamic optimization design of spindle-bearing systems in turn-milling centers. The static analysis was presented in another paper. The thermal analysis will be presented in a future paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.