Abstract

This paper investigates the rupture of thin-walled ductile cylinders with isolated corrosion defects, subject only to internal pressure. It aims to propose a new solution for predicting the maximum load limit that will rupture a corroded pipeline, regardless of its material, its geometric ratio, or the dimensions of the existing corrosion defect. This solution is the result of several numerical simulations by variation of the length and depth of the defect with the assumption that the width of the defect has a negligible marginal effect. In all our numerical simulation analyses, the rupture was controlled by the Tresca failure criterion which is expressed in terms of material hardening exponent and the ultimate material stress. The proposed solution was then compared with the currently used coded methods, first B31.G, its improved version 0.85dL, and then DNV-RP F101, using an experimental database compiled from the existing literature. As a result, our proposed solution has been validated and has resulted in rupture ratios ranging from approximately 0.7 to 1. Furthermore, it has a tight prediction range compared to the B31.G, 0.85dL, and the DNV-RP F101 methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call