Abstract

A computational approach based on the thermal elastic plastic finite element method was developed for predicting welding residual stress in low carbon alloyed steel welds by taking into account the effect of the solid-state phase transformations. The kinetics of phase transformations was described by Johnson Mehl Avrami Kolmogrov (JMAK) equation for bainitic transition and by Koistinen-Marburger (K-M) relationship for martensitic transition. Moreover, an additive rule depending on volumetric phase fraction was adopted to represent the material property changes during heating and cooling. Consequently, the residual welding stresses in a 2.25Cr1Mo steel TIG welded plate were computed. Early calculation results suggest that the bainitic and martensitic transformations took place in the weld the heat-affected zone drastically reduce the residual longitudinal tensile stress in the region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call