Abstract

Lithium-ion batteries are currently widely employed in a variety of applications. Precise estimation of the remaining useful life (RUL) of lithium-ion batteries holds significant function in intelligent battery management systems (BMS). Therefore, in order to increase the fidelity and stabilization of predicting the RUL of lithium-ion batteries, in this paper, an innovative strategy for RUL prediction is proposed by integrating a one-dimensional convolutional neural network (1D CNN) and a bilayer long short-term memory (BLSTM) neural network. Feature extraction is carried out through the input capacity data of the model using 1D CNN, and these deep features are used as the input of the BLSTM. The memory function of the BLSTM is applied to retain key information in the database and to better understand the coupling relationship among consecutive time series data along the time axis, thereby effectively predicting the RUL trends of lithium-ion batteries. Two different types of lithium-ion battery datasets from NASA and CALCE were used to verify the effectiveness of the proposed method. The results show that the proposed method achieves higher prediction accuracy, demonstrates stronger generalization capabilities, and effectively reduces prediction errors compared to other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call