Abstract

To enhance production quality, productivity and energy consumption, it is paramount to predict the remaining useful life (RUL) of a cutting tool accurately and efficiently. Deep learning algorithm-driven approaches have been actively explored in the research field though there are still potential areas to further enhance the performance of the approaches. In this research, to improve accuracy and expedite computational efficiency for predicting the RUL of cutting tools, a novel systematic methodology is designed to integrate strategies of signal partition and deep learning for effectively processing and analysing multi-sourced sensor signals collected throughout the lifecycle of a cutting tool. In more detail, the methodology consists of two sub-systems: (i) a Hurst exponent–based method is developed to effectively partition complex and multi-sourced signals along the tool wear evolution, and (ii) a hybrid CNN-LSTM algorithm is designed to combine feature extraction, fusion and regression in a systematic means to facilitate the prediction based on segmented signals. The system was validated using a case study with a large set of databases with multiple cutting tools and multi-sourced signals. Comprehensive comparisons between the proposed methodology and some other mainstream algorithms, such as CNN, LSTM, DNN and PCA, were carried out under the conditions of partitioned and unpartitioned signals. Benchmarks showed that, based on the case study in this research, the prediction accuracy of the proposed methodology reached 87.3%, which is significantly better than those of the comparative algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.